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Quantum quasi-symmetric functions and Hecke algebras

J-Y Thibon; and B-C-V Ung
Institut Gaspard Monge, Univergitde Marne-la-Va#le, 2 rue de la Butte-Verte, 93166 Noisy-
le-Grand cedex, France

Received 10 June 1996

Abstract. The algebra of quasi-symmetric functions is known to describe the characters of
the Hecke algebrdd, (v) of type A,_1 atv = 0. We present a quantization of this algebra,
defined in terms of filtrations of induced representations of the 0-Hecke algebra. We show
that thisq-deformed algebra admits a simple realization in terms of quantum polynomials. For
generic values o, the algebra of quantum quasi-symmetric functions is isomorphic to the one
of noncommutative symmetric functions. This gives rise to a one-parameter family of Hilbert
space structures on the algebra of nhoncommutative symmetric functions, as well as to new
interesting bases.

1. Introduction

It is well known that characters of the symmetric groSip are encoded by symmetric
functions, and this correspondence is the cornerstone of many computational methods in
representation theory (cf [15, 24]). The same correspondence works as well for the Hecke
algebraH,(v) whenv is neither 0 nor a root of unity (see [1]). Recently, it has been
understood that certain generalizations of symmetric functions, originally introduced for
different purposes, were the appropriate objects to encode the representation theory of the
Hecke algebra at = 0 [5, 12].

The first of these generalizations is the algebrgudsi-symmetric functionitroduced
by Gessel [10] in his investigation of Kronecker products of certain representations
of symmetric groups. The second one is the algebran@ficommutative symmetric
functions][7], originally introduced with the aim of extending to the Gelfand—Retakh quasi-
determinants [8, 9] the symmetric function interpretations of certain determinantal identities.
Both algebras are endowed with natural structures of Hopf algebras. As shown by Malvenuto
and Reutenauer [17] (see also [7]), these Hopf algebras are dual to each other. Moreover,
both algebras have distinguished bases, in which the structure constants are non-negative
integers. This raised the question of a representation-theoretical interpretation, and the
answer was eventually found to be provided by Hecke algebras=ad [5].

The need for two different Hopf algebras in the description of the representations of
H,(0) comes from the fact that this algebra is not semisimple. If we decide to consider two
finite dimensionalH, (0) modules as equivalent whenever they have the same composition
factors, the equivalence classes of all finitely generated modules of all 0-Hecke algebras,
endowed with an appropriate induction product, build up the ring of quasi-symmetric
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functions. On the other hand, if we restrict ourselves to the class of finitely generated
projective modules, with isomorphism as the equivalence relation, we obtain by the same
process the ring of honcommutative symmetric functions, and their duality can now be
traced back to a general fact in representation theory (cf [2]).

In the case where is anth root of unity, the corresponding rings can be respectively
identified to the basic representation of the quantum affine algé,p(rﬁ,,) and to its dual,
and the standard Fock space realization of these representations lead to the discovery of
naturalg-analogues of these representation rings [13, 14], the extra information provided by
g being conjectured to describe natural filtrations of the modules.

In this paper, we describe a simpleanalogue of the algebra of quasi-symmetric
functions, regarded as the ring of equivalence classes of finitely geneatéd modules.
This g-analogue is defined by means of filtrations of induced modules, and involves a
g-analogue of the shuffle product. This quantum shuffle, which is the simplest particular
case of a construction of Rosso [20], is investigated in [3], where various connections are
established, in particular with Greenberg’'s quon algebra [11,6,18]. For generic values
of ¢, the algebra of quantum quasi-symmetric functions is isomorphic to the algebra of
noncommutative symmetric functions. Moreover, it turns out that the algebra of quantum
guasi-symmetric functions can be realized by means of quantum polynomials, following
one of the specialization schemes proposed in [7] for noncommutative symmetric functions.
This allows one to express the usual bases of nhoncommutative symmetric functions in
terms of those of quasi-symmetric functions, leading to formulae which have no classical
analogue. Also, this provides a natural family of Hilbert space structures on noncommutative
symmetric functions, described lgyanalogues of classical formulae.

2. The 0-Hecke algebra and its representations

The Hecke algebr@l, (v) of type A,_1 is generated by — 1 elementdy, ..., T, 1 subject
to the relations

IiTy = T;T; for[j —il>1 (1)
TiTinaTi =TinaTiTia fori <n-—1 )
Tl.2 =w-—-DT; +v. 3

For v = 0O this algebra is not semisimple, and it can be shown [19] that it Has 2
inequivalent irreducible representations. These representations, which are one-dimensional,

are defined as follows. For a subgetC {1,2,...,n — 1}, set
) -1 ifieD @
PRI =1 g otherwise.
Clearly, these formulae define a representatiorfipf0) in the one-dimensional spade
For technical reasons, it is better to use the integer vekter C(D) = (i1,...,0r41)
defined forD = {di,...,d,} by iy = dy — dr_1 as a label for this representation, where

we setdy = 0 andd,;; = n. Thus,I is a composition ofz, i.e. a positive integer vector
with sum|I| = n. We will sety; = pp, and the representation space will be denoted by
C,. The subse®D corresponding to the compositidnis called the descent set &#f and is
denoted by Dead).

Let QSym be the linear subspace of the polynomial ri@fix;, x,, ...] (in an infinite
number of commuting variables) spanned by the elements (called quasi-monomial functions)
Mi= ) xgxgx (5)

k1<kp<---<k,
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where I runs over all compositions. It turns out th@tSym is closed under the product
of polynomials. It is called the algebra of quasi-symmetric functions [10]. An important
distinguished basis of) Sym, the quasi-ribbon functions, is defined by

Fr=Y M, (6)
J=1
whereJ > I means that/ is finer thanl, i.e. that Deél) C DeqJ), e.g.(1,2,2,1,1,3) >
(3,3.4).
The link between quasi-symmetric functions and 0-Hecke algebras can now be described
as follows [5]. First of all, the Specht modul&s(v) of the generic Hecke algebid, (v)
still make sense for = 0 but are no longer irreducible. Léj}; be the multiplicity of C,
as a composition factor df; (0). It follows from Carter’s description of the decomposition
matrix [1] that these numbers are given by
S, = Z d)\]F] (7)
|I|=n
wheres; is a Schur function, regarded as a quasi-symmetric function. Moreover, if one
defines a Frobenius map sending the class of the modw@, to the quasi-symmetric
function F;, one can show that this map is compatible with outer tensor products as in the

case of symmetric groups. That is, if one defines, fa,a0)-module M and aH,(0)-
module N, the outer producd/®N as the induced representation

M&N = (M ® N) TZ:YES)(QHAO) ®)
then
F(M&N) = F(M)F(N). ©)

The algebra of noncommutative symmetric functions, although defined as an abstract
algebra, can be concretely realized as follows [7]. Aet {a3, ao, ...} be an infinite set of
noncommuting variables. The complete homogeneous honcommutative symmetric functions
S, (A) and the elementary symmetric functiang(A) are defined by the generating functions

o (A) =Y 1"S,(A) =[[A—rta)™ (10)
n=0 k=1
ha(A) =Y (=" An(A) = o, (A) = = tap) (11)
n=0 k>1

where ¢ is a variable commuting with the;. The algebraSym of noncommutative
symmetric functions is freely generated by either tfeor the A;. For a composition
I = (i1, ...,i,) one defines the elemensd = S, ... S;, A’ = A, ... A;, and the ribbon
Schur functions

Ry =) (-)!"Dg, (12)
J=<1

wheref(I) = r is the length (number of parts) of a compositibnin terms of the 0-Hecke
algebra, ribbon Schur functions correspond to isomorphism classes of principal projective
indecomposable modules, which explains that the two Hopf algeb$sr» and Sym can

be put in duality by means of the pairing

(Fr,Ry) =38y (13)

(for which one also hagM;, S7) = §;,).
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3. Quantum quasi-symmetric functions

The productF; F;, which corresponds to the outer tensor product of two irredudih)i®)-
modules, can be described in terms of shuffles of permutations [16]. Permutations can be
considered as words on the lettet1. .., n, and, in general, the shuffle product v of

two words on some alphabet can be defined by the recursive formula

if u=au andv = bV’ a,be A uiiv =a( 1) +buiuv’) (14)

with the initial conditionu e = ¢ LLiu = u, € being the empty word.

We also need the notions of descent set and descent composition of a permutation. One
says that is a descent of € S, if (i) > o(i +1). The descent set ef will be denoted
by Dego). The composition associated to this set by the process described in the preceding
section is denoted by¢ (o) and is called the descent compositionoof

Now, to multiply F; and F,, where|I| = n and |J| = m, take any permutation of
1,...,nsuchthatC(u) = I and any permutation of n+1, ..., n+m such thatC(v) = J.
Then the shuffle of the two words andv is a sum of permutations of, 1..,n +m

uly = Z CpW (15)

WES1n

and the product is given by
FiF; = Z cwFew)- (16)

weS, 1,

There exists a-analogue of the shuffle product, which is known to be related to the
representation theory aff, (0) [5, 3]. This quantum shuffle, which is the simplest case of
Rosso’s construction [20] (it corresponds to the choice of a scalar matrix as solution of the
Yang—-Baxter equation), is defined by

if u=au andv = b’ a,be A umqv=a(u’mqv)+q|“‘b(umqv’) a7)

where |u| is the length ofu. It can be shown that this operation is associative, and that
when ¢ is not a root of unity, theg-shuffle algebra is isomorphic to the concatenation
algebra, which corresponds to the cgse: 0. This follows from Zagier's formula for the
determinant of the operatar,(q) = Y_,.s ¢“”o of the regular representation of 5],
and has to do with the fact that the quonic Fock space is the same fpeall-1, 1) [22].
The representation-theoretical interpretation of ghghuffle is as follows. The induced
representatiof; ®C; is generated by the vect{) = 191 € C1®C,. There is a filtration
of this module whosé-th slice M, is spanned by the elemerits|0) for permutationss
of lengthk. Now, if one computes the produéy F; by using theg-shuffle instead of the
ordinary one in formula (16), the coefficient @f Fy; in the result is the multiplicity ofFy
at levelk of the filtration.
This suggests to us to define the algebréym, of quantum quasi-symmetric functions
as the algebra with generataFs and multiplication rule

FIFJ = ch(q)FC(w) (18)

for permutations: andv as aboveg, (¢) = (w|uLL,v) being the coefficient ofv in w1 v.
We also define the basig/;), of 0Sym, as well as analogues of other relevant bases by
the same relations as in the classical case.
For generic values of, QSym, is freely generated by the one-part quasi-ribb&hs
or as well by the power-sum¥,,, or any sequence corresponding to a free set of generators
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of the algebra of symmetric functions in the classical case. This means that if we define
for a composition/ = (iy, ..., i)

F' =F,F,...F, and M' =M M, ...M; € QSym, (19)

then the F! (resp theM’) form a basis ofQSym, (this is clearly not true foy = 1,

as in this case these elements are symmetric functions). The easiest way to see this is to
take as generatorE, = Fi (corresponding to elementary symmetric functions). Indeed,

E! = E, E;,---E; = Fj- + O(q) whereI™~ is the conjugate composition df and I the

mirror image compositior(i,, ..., i1). Thus, the mapF;, — Ej. is invertible, since its

matrix is of the form 1+ O(g).

Thus, for generig, QSym, is isomorphic to the algebra of noncommutative symmetric
functions, and the natural correspondence is to idestjfwith F,, since both elements are
noncommutative analogues of the complete homogeneous symmetric funigtioffus,
we define a ring isomorphisnfi — f from Syminto QSym, by S, = F,. We then have
a realization ofSym in a space which is g-analogue of its dual, and we can now define
a scalar product on this space by setting

(FiIR;) =815 (20)

in accordance with the duality formula (13). It follows from Zagier's work on the quon
algebra [25] that this scalar product degenerates whisna root of unity, and in particular

in the classical limity = 1. However, there are other singular values of the parameter, but
we do not know how to characterize them. The first singular values iafthe complex
plane are plotted in figure 1.

4. Quantum quasi-symmetric functions asg-polynomials

Let C,[X] = C,[x1, x2, .. .] be the associative algebra generated by an infinite sequence of
elementsy; subject to the commutation relations
forj > i XjXj = qXiXx;. (21)

Let Sym(X) be the subalgebra @,[X] generated by the specializatian — x; of the
noncommutative symmetric functions defined by formulae (10) or (11). We will prove that
Sym(X) is isomorphic toQ Sym,, the correspondence being given by

M; < M; = Z lellle (22)
i< <Jr

That is, if one defines

=Y (23)
j=1
one has fow a permutation of 1...,n andv a permutation oft +1,...,n+m
FeuFew) = Z(WW L) Few) (24)

w

where (wlu111,v) is the coefficient of the worab in the g-shuffleu1ii,v. As F, = S,(X),

this will be sufficient to prove our assertion. To establish (24), we need to recall some
results from the theory of partially ordered sets (posets, cf [21]). ALble a partial order

on [n] ={1,...,n}. We write <p for the partial orderP and < for the usual order onv].

We denote byL(P) the set of standard words on [z] with |w| = n such that ifx <p y
thenx occurs on the left of in w. A P-partition is a functionf : P — X such that
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.57

t.;

e

-1.5

Figure 1. Singular values of for n < 7.

o i <p jthenf() < f(j),
ei <pjandi > jthenf@i) < f()),
the ordering onX being the natural onex( < x; for i < j). The set of allP-partitions is
denoted byA(P). Generalizing a construction of Gessel [10], we definedtgenerating
function of a posefP as
Ty(Py= Y ff2)...fn) € Cy[X] (25)

feA(P)

with f(i) € X. To a standard wordh = wyw>...w, On [r], one associates the posetw)
defined bywi <pw) w2 <pw) -+ <pw) Ws. Then, one can check that tlyegenerating
function of P(w) is given by

T (P(w)) = q"™ Few) (26)

wherel(w) is the number of inversions ab. The g-generating function fokP, <p) is
therefore

Fq(P) = Z ql(w)FC(w)' (27)
weL(P)
For g = 1, we obtain the classical generating function®f{10,16]. A consequence of
(25) is

Fy(PLU Po) =T (P (P) (28)
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where P, is a poset on(1,...,n}, P, aposetonin+1,...,.n+m}andP = PLU P,
is defined as the poset dd, ...,n + m} for whichi <p j iff i <p j Oori <p, j (this
follows from (25)). Now, we argue as in [16]. Sind® is disjoint from P,, the map
A(PLU P;) — A(P1) x A(P2) given by f — (f|P1, f|P2) is a bijection, so that

TyPLUP) = Y f)...f)fn+1)...f(n+m)

feA(PIUP,)

= Z g ...gmhQ) ... h(m)
geA(Pr)
heA(Pp)

= Fq(Pl)Fq(P2)~
To complete the proof, we need the following property [16]. With P, as above,
L(P1U Py) = L(Py) 11 L(Py). (29)

We are now in a position to conclude. Letbe a standard word on.1.n andv be a
standard word om + 1...n + m. Then, applying successively (26), (28), (27) and (29),
we obtain
FewFew = ¢ T (P@)Ty (P ()
= ¢ (Pu) U P(v))

— qfl(u)fl(v) Z ql(w) FC(w)
weL(P(u)UP(v))

I DL 0

weullly

We recall that given two standard wordsv as above

ULl v = q—1<u)—1(u) Z q[(w)w. (31)
weullly
Combining (30) and (31), we obtain
FewFew = Z(WIM Lgv) Feq) (32)

w

which establishes the formula.

5. Some formulae

The fact that noncommutative symmetric functions can be realizedSiwn, leads to the
possibility of expressing the usual bases of noncommutative symmetric functions in terms
of quasi-symmetric functions (and conversely), which is clearly meaningless in the classical
case.

We first recall some results. Lét= (i3, ..., i,) be a composition; we shall denote by
[1] = i1 xip x i3 x - - - x I, the skew diagramobtained by juxtaposing corner to corner rows
of successive lengths, i», ..., i,. For instance [4, 2, 3, 1] is the diagram indicated by the
configuration of boxes illustrated below:

I
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Let f — fV be the linear involution ofCS, defined bys¥ = o~1. One says that a
permutation fits [] if its descent set is contained in D&$. Then one can check that

o=V, (33)
Des(o)CDes)
whereVy =1...i1, Vo =i1+1...i1+io, ..., V, =ir1+io+--+i,_1+1. . ig+io+- - +i,.
For instance,
1211134 = 1234+ 1324+ 1342+ 3124+ 3142+ 3412 (34)

and

(12w34y = [1]2] + [1]3] + [2]3] +
3]4] [2]4] [1]4]

1[4 + [2]4 + [3]4
2[3 1]3 1]2
i.e. we obtain the set of permutations that fit the skew diagram associated with the
composition (2,2).

From (33), it follows that

F' = Z( > ql(”))Fj. (35)

C(o)=<I
ClohH=J

We may now express the ribbon Schur functions on the quantum quasi-ribbons. The
correspondencs, = F, gives

s'zz( ) q“‘”)F,. (36)

J C(o)=<I
Clo™YH=J

Let us now find the corresponding formula &y . Combining (36) and (12) yields

Ri=Y" ( > (—1)’(””(”4“”)) Fx (37)
£ it
Coc™hH=K

Bg
and Bg can be rewritten as

By = Zq”">(—1>’<’>< > (—1)””).

C(o)=xJ
J=<I

We consider two cases:
e C(o) # 1. Then

Z (_1)1(1) — Z (_1)“395(])\

Clo)=J=I Dego)CDesJ)CDes)

|Des))|
Ny ('Def(l)l>

i=0
=0

e C(o) = I. It follows that
D' > V=1

Co)=J=I
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Thus
C(o)=1
which establishes the formula

1%,:2( ) qaw)p,. (38)

J C(o)=I

Clo™hH=J
From this, one deduces the following scalar product, which is the lepgthalogue of
the classical formula for the scalar product of two ordinary (commutative) ribbon Schur
functions [10]:

RiRp= > ¢ (39)

C(o)=I,C(c~H)=J

These polynomials are algeanalogues of the Cartan invariantsif(0). A representation

theoretical interpretation will be given in the forthcoming section.
Also, using the following formula for power-sums of the first kind:

n—1
W, = > (=D Rty (40)
=0
one finds
A I G A ) o (41)
|I|=n

where majl) the sum of its descent set (major index). The proof is as follows. JFor
a subset of(1, 2,...,n — 1}, we say that a standard hook tableau has typéi € J if
and only ifi occurs in a lower row of the tableau thant 1 [1]. Then given a subset

D c {1,...,n — 1}, there exists exactly one standard hook tableau suchrthatof type
D. Indeed, ifD = {dy, d>, . .., di} then the column part of must be

dcr+1

d._,+1

d+1

and T is of shape(n — k, 1%). For instance, forD = {2,5,8,9,13} C {1,..., 14} we
associate the standard hook

E

10|

9]

6]

3

1]|2]4]5]7]8]11]12[13]15]

We thus get
Rl".n—k g Z qd1+d2+'“+dk FC(D)
|D|=k
— Z qmaj(I)Fl‘

I(I)=k+1

To complete the proof, we recall that for a compositioof n, [(I) +1(I™) =n + 1. This
clearly implies (41).
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The remainder of this section is devoted to the formulation of the multiplication rule of

guantum quasi-monomial functions. We consider the operajodefined as follows:

au ©4 bv = a(u ©4 bv) + g"““1b(au Qg V) + "% (a + b)(u Qg V)

aQg€e =€ a=a
(where|w| = >, w;) for a,b € N andu, v two compositions regarded as words on the
alphabetN*. Then given two compositions and J, we have:

MiM; = Z(KH Oy J)Mg.

K

For example:

Moy - Miz = (q + D Mor12+ ¢*Mo1o1+ g Motz + Mazo + ¢*Mazia+ (¢° + q¥) Mizon
+¢* M3+ ¢*Maa1 + gMs12 + g3 M1 + g Mas.

6. Interpretation of the g-Cartan invariants of H,,(0)

Norton [19] obtained a description of the indecomposable projective modulesHyvyey.
For a subsetd of {1,...,n — 1}, we define(d4, andV, in H,(0) by

DA = Z Tw Va= TwA (42)
weA
wherew, is the maximal permutation of the subgroup generateddyy| a € A}. For a
composition! of n, we set

nr =0UzVa (43)

where A = Deq/) andA = {1,...,n — 1}\DesI). The projectiveH, (0)-module M; is
realized by the left ideal, (0O)n; [1,19]. As shown in [12], projective modules can always
be described by a graph, i.e. possess a basis, ..., v, of M; such thatZ;v; can be
only 0, —v; or anothery,.

Example 6.1Let I = (1,2,1), A = Deg/) = {1,3} and A = {2}. Applying (43),
we obtainniz; = (1 + T»)ThT3. The moduleM;,; can be described by the following
‘automaton’. An arrow indexed by; going from f to ¢ meansT; f = g and a loop on the
vertex f indexed byT;|e (with e =0 ore = +1) meansT; f = ¢f:

T,-1
T4-1

Herex = n101, y = Thx, z = Tax, u = TsTix, v = ToT3T1x.
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M, can be realized aH, (0)v,;, wherev; = V,; [3]. With this choice of the generator
vy, M, has for baside, = T,00;|Deqc) = Deq1)}, and clearly, this satisfies

o0 if [(0;0) > I(c) and Deso;0) = Deqo)
Tie, =3 —es if [(o;0) < (o) (44)
0 if Des(o;0) € Deqo).

Example 6.2Let I = (1,2, 1). Applying (44), we see that the generator of the module is
indexed by the permutation obtained by filling the columns of the skew Young diagram of
ribbon shapd from bottom to top and from left to right with the numbers21...,n. The
action of the generators df,(0) on the basige,) of Mj»; is described by the following
graph. An arrow indexed by going fromo to ¢’ meanss’ = ;0 and a loop on a vertex

o is indexed by the type of the permutatien

1.3G

2
1
2li

3
1

2G
y B

D23

L3G 33

This shows that these modules have natural filtrations, given by the distance to the initial
vertex in the graph. LetH® = @;4,)=«CT, be the length filtration ofH,(0) and

M,(k) = H,f")vl. The Ml(k) are submodules oM, of which they form a filtration. Then

the graded characteristic @#f; is defined by

fq(MI) — quf(MI(k)/Ml(k+l)) (45)
k

and we have
R = q'"V F (M) (46)
so that

FM) =g R = ()

J C(o)=1
ClohH=J
Thus, theg-Cartan invariants describe the filtrations of the principal indecomposable
projective modules.
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